RAYONNEMENT -EXERCICES

1. Température du Soleil :

On admet que le Soleil est un corps noir dont on veut estimer la température Ts.

On note R_S le rayon du Soleil, R le rayon de la Terre, d la distance Terre-Soleil et T =300 K la température de la surface terrestre.

On ne considère pas l'effet de l'atmosphère.

- a) Exprimer la puissance reçue par la Terre de la part du Soleil.
- b) En écrivant l'équilibre thermique de la Terre, en déduire une équation liant T, T_s, d et R_s.
- c) Le Soleil est vu de la terre sous un angle $\alpha=10^{-2}$ rad. En déduire la température de surface du Soleil. Réponse : $T_S=6000$ K.

Température du Soleil : corrigé :

a) La puissance émise par le Soleil est $P = \sigma.4.\pi.R_s^2.T_s^4$ La puissance reçue par la terre vaut :

$$P_{reçue} = P.\frac{\pi R_T^2}{4\pi d^2}$$

b) L'équilibre radiatif de la Terre (on considère ici un albédo nul) s'écrit :

$$P_{reçue} = \sigma.4.\pi.R_{T}^{2}.T^{4}$$

$$\Leftrightarrow T^{4} = T_{s}^{4} \frac{R_{s}^{2}}{4d^{2}}$$

c) On a:

$$\alpha \approx \tan \alpha = 2R_s/d$$
.

On calcule alors : $T_s = 20.T = 6000 \text{ K}$.

2. Puissance reçue par la Terre :

On donne : température du Soleil T_S = 5800 K.

Rayon du soleil : $R_S = 7.0.10^5$ km ; rayon de la Terre $R_T = 6400$ km.

Distance Terre-Soleil $d_{TS} = 1.5.10^8$ km.

- a) Exprimer la puissance totale rayonnée par le Soleil.
- b) En déduire la puissance totale reçue par la Terre en faisant une approximation.
- c) En déduire que la puissance surfacique moyenne reçue sur Terre vaut $P_{surf} = 350 \text{ W.m}^{-2}$.

Puissance reçue par la Terre : corrigé :

- a) $P = \sigma.S.T^4 = 4.0.10^{26} W.$
- b) La puissance reçue par un disque de rayon R_T situé à d_{TS} est :

$$P_{reçue} = P.\frac{\pi R_T^2}{4\pi d_{TS}^2} = 1.8.10^{17} W$$

c) La puissance moyenne par unité de surface est :

$$P_{surf} = \frac{P_{reçue}}{4\pi R_T^2} = 350 \, W. m^{-2}$$

3. Effet de serre:

La puissance surfacique moyenne reçue du Soleil vaut P_{surf} = 350 W.m⁻².

L'atmosphère et la Terre ont un albédo A = 0,3 : ils réfléchissent 30% de l'énergie incidente.

L'atmosphère émet un rayonnement infrarouge vers la Terre.

On suppose que l'atmosphère (température T_a) laisse intégralement passer 67% du rayonnement solaire, mais filtre totalement le rayonnement émis par la Terre (température T).

a) En se plaçant au-dessus de l'atmosphère, écrire pour le système Terre +atmosphère de température T_a, l'égalité entre la puissance solaire surfacique absorbée et la puissance surfacique rayonnée.

b) Comment s'écrit pour la Terre de température T le bilan radiatif exprimant l'égalité entre les puissances absorbées et rayonnée ? En déduire la température terrestre.

Effet de serre : corrigé :

- a) $(1-A)P_{surf} = \sigma T_a^4$
- b) $(1-A)P_{surf} + \sigma T^4 = \sigma T_a^4$ (l'atmosphère se comporte comme une vitre qui émet la puissance surfacique σT^4 sur chacune de ses faces).
- c) On en déduit T = 304 K = 31,5°C.

4. Thermomètre au soleil (*):

Un thermomètre est placé dans une pièce de température $T = 27^{\circ}C$, derrière une vitre a travers laquelle il reçoit une fraction du rayonnement solaire caractérisé par un flux surfacique $\Phi = 100 \text{ W.m}^{-2}$. En ne considérant que les transferts radiatifs, calculer la température T_1 affichée par le thermomètre. $Réponse: T = 42^{\circ}C$.

Thermomètre au soleil : corrigé :

Le problème est analogue à celui de l'effet de serre ; on écrit donc :

$$\Phi + \sigma T^4 = \sigma T_1^4$$
 donne $T_1 = 315$ K.

5. Densité d'énergie volumique spectrale en fréquence (*) :

a) En écrivant que l'énergie volumique rayonnée dans un intervalle de longueurs d'onde $\Delta\lambda$ est égal à celle rayonnée dans l'intervalle de fréquence $\Delta\nu$ correspondant, montrer que la densité d'énergie volumique spectrale en fréquence $u_{\nu,\nu}$ est :

$$u_{\nu,\nu} = \frac{8\pi h}{c^3} \frac{\nu^3}{\exp\left(\frac{h\nu}{k_B T}\right) - 1}$$

b) Tracer (machine) l'allure de $u_{\nu,\nu}$ pour une température T donnée. La fréquence v_{max} pour laquelle la fonction est maximale vérifie-t-elle v_{max} = c / λ_{max} ?

Densité d'énergie volumique spectrale en fréquence : corrigé

a) L'énergie volumique rayonnée dans un intervalle de longueurs d'onde $\Delta\lambda$ est :

$$u_{v,\lambda}$$
. $\Delta\lambda$

L'énergie volumique rayonnée dans un intervalle de fréquence Δν est :

$$u_{\nu\nu}$$
. $\Delta\nu$

On en déduit:

$$u_{\nu,\nu} = u_{\nu,\lambda} \cdot \frac{\Delta\lambda}{\Delta\nu} = u_{\nu,\lambda} \cdot \frac{c}{\nu^2}$$

qui donne bien la forme propsée.

b) L'allure de $u_{v,v}$ pour une température T donnée est similaire à celle de $u_{v,\lambda}$ (attention son unité est différente) . La fréquence v_{max} pour laquelle la fonction est maximale est telle que :

$$\frac{du_{v,v}}{dv} = 0$$

$$\Leftrightarrow x. e^x = 5(e^x - 1)avec \ x = \frac{hv}{k_B T}$$

Or la fréquence λ_{\max} pour laquelle la fonction $u_{v,\lambda}$ est maximale est telle que :

$$\frac{du_{v,\lambda}}{dv} = 0$$

$$\Leftrightarrow x. e^x = 3(e^x - 1)avec \ x = \frac{hv}{k_B T}$$

Ces deux équations n'ayant pas la même solution, $\lambda_{max} \neq c/\nu_{max}$.